考研数学一考点归纳

更新时间:2025-11-15 23:06:02
最佳答案

考研数学:七大难点归纳

考研数学七大难点归纳如下:函数、极限与连续 核心考点:求分段函数的复合函数;求极限或确定原式中的常数;讨论函数连续性及间断点类型;无穷小阶的比较;判断连续函数在区间上的零点个数或方程实根存在性。考核形式:选择题、填空题或大题组成部分。复习关键:深入理解概念,通过习题强化对本质的掌握。

考研七个基本不等式是线性代数部分不等式,不等式,平均不等式均值不等式,函数不等式,不等式证明题,基本不等式,用函数单调性证明不等式。

管理类联考的难点如下:知识点不难,难的是考试时间不充裕,要的是有限的时间内得分最大化,管理类综合很多同学是做不完的,数学看的是58分钟之内的得分,逻辑是看53分钟之内的得分,语文是看一个小时之内的得分。

备考难点:知识基础薄弱:高职生文化课学习强度低于普高,英语、数学等科目可能存在知识断层。能力参差不齐:自主学习能力、时间管理能力差异大,需针对性补强。竞争压力:专转本考试需与全省考生竞争,录取率受招生计划限制。辅导的必要性:系统培训可弥补知识短板、提升应试技巧。

考研数学一空间解析几何的难点常考点分析

1、向量运算 难点:叉积、混合积的计算及其几何意义的理解。叉积涉及向量的垂直与平行关系,混合积则与体积计算相关,这些概念较为抽象,需要较强的空间想象能力。常考点:利用向量运算求解空间几何问题,如判断两向量的夹角、计算两向量的垂直投影等。

2、难点:空间想象能力要求高。解析几何需要将几何图形与代数方程联系起来,要求考生具备较强的空间想象能力,能够在脑海中构建出几何图形的形状和位置关系,并通过代数方法进行求解和分析。例如,在研究二次曲面的性质时,要根据其方程判断曲面的类型,并想象出曲面的大致形状。

3、方程和不等式部分为每年必考查部分,考查的重点是一元二次方程求根公式和韦达定理。数列部分既是重点又是难点,要重视并加强对数列公式的复习及综合运算能力。几何 平面图形:三角形、四边形(矩形、平行四边形、梯形)、圆与扇形。空间几何体:长方形、柱体、球体。

4、考研数学题目中,逻辑推理是解题的重要一环。考生需要通过分析题目条件,推理出正确的解题步骤和答案。这种能力不仅需要对数学知识有深入的理解,还需要具备一定的逻辑思维能力和问题解决能力。空间想象能力挑战:对于涉及几何或空间解析几何的题目,考研数学对考生的空间想象能力提出了较高要求。

5、考研数学三的考试范围及难度区别:考试范围 考研数学一 高等数学:涵盖函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程等内容。线性代数:包括行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型等。

相关推荐
CopyRight © 2020-2025 广才考研网 |网站地图 All rights reserved. 桂ICP备2024047550号-11 站务邮箱:newmikke01@163.com

页面耗时0.0334秒, 内存占用1.71 MB, 访问数据库25次